Circuitos Trifásicos

Aplicado 20/07/2011.

Problema 4 (8 ptos.)

Se tiene un sistema trifásico balanceado que alimenta a dos cargas a través de una línea trifásica que tiene $Z_{\rm LIN}$ =2+j6 Ω por fase. La carga 1 está conectada en estrella y tiene 125+j250 Ω por fase, siendo \hat{V}_{RN} = 5 KVrms. La carga 2 está conectada en delta y absorbe 120-j60 KVA.

- a) (6 p.) Determinar \hat{V}_{AN} e \hat{I}_{CN} en la carga 1, \hat{V}_{BC} e \hat{I}_{AB} en la carga 2.
- b) (2 p.) Determinar la potencia compleja total absorbida por las cargas.
- c) (1 p., opcional) Determinar la pérdida total en la línea \acute{o} la impedancia Z_{Δ} de la carga 2.

Problema 3 (04/03/2008) (9 puntos). Dos cargas trifásicas balanceadas se conectan en paralelo. La carga 1 tiene una conexión en Estrella (Y) con una impedancia por fase de 800+j600 ohm. La carga 2 tiene una conexión en Delta (Δ) y consume una potencia de 120KVAR con un factor de potencia de 0,9 en adelanto. La tensión línea-neutro existente en la carga es de 8V3 KV_{RMS}. La línea de distribución tiene una impedancia de 100 ohm por fase. Determine:

- 1. (1 p) La impedancia por fase de la carga conectada en delta
- 2. (5 p) La potencia compleja total entregada a la carga.
- 3. (1 p) La potencia que se pierde en la línea
- 4. (2 p) Voltaje máximo de fase V_{CN} y de línea V_{CA} si la fuente trifásica es un generador trifásico conectado en estrella.

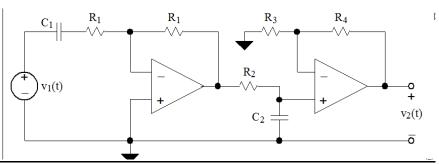
Problema 1 (30/03/2011)

En un circuito trifásico balanceado, se alimenta a una carga conectada en estrella, que en total absorbe 96+j72 KVA, a través de una línea trifásica con 0,1+j0,1 Ω por fase, obteniéndose $\mathbf{V}_{\text{BC}} = \sqrt{3}$ –j3 KVrms en la carga.

- a) Determine V_{AN} en la carga y la corriente de línea I_C .
- b) Determine la potencia compleja total que entrega la fuente y la tensión \mathbf{V}_{bn} en la fuente.

Aplicado 10/07/08

Problema 5 (9 ptos.)

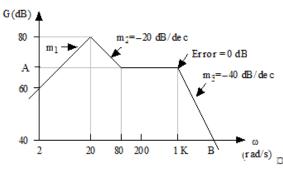

Un generador trifásico en estrella alimenta a una carga conectada en Y que absorbe 9 KVAR con un factor de potencia de 0,8 en atraso, a través de una línea trifásica que tiene 1+j2 ohms por rama. Se sabe que la pérdida total en la línea es de 675 W. Determina:

- a) (1 p) La corriente de línea I_L.
- b) (4 p) Las potencias complejas absorbida por la línea y entregada por el generador.
- c) (4 p) La corriente de fase I_{BN} y el voltaje V_{AN} en la carga, si $V_{BN} = V_F / -30^\circ$.

Respuesta en Frecuencia

Problema:3:(4:ptos.)¶

 $\begin{array}{llll} Para\cdot & el\cdot circuito\cdot mostrado, \\ determina\cdot & la\cdot & función\cdot & de\cdot \\ transferencia\cdot & de\cdot & voltaje\cdot \\ H(s)=&V_2(s)/V_1(s), \\ suponiendo\cdot \\ que\cdot los\cdot OPAM\cdot son\cdot ideales. \\ \square \end{array}$


Problema 4 (4 ptos.)

Para·la·función·de·transferencia·de·voltaje·dada·a·continuación,·halla·expresiones·para· $|H(\omega)|$ ·y· $\phi(\omega)$, y·calcula·los·valores·de·la·tabla·de·la·derecha.¶

$H(s) = \frac{1000(1 + (s/200))}{(1 + (s/5000))(1 + (s/1000) + (s/1000)^2)}$	ω·(rad/s)¤	$ H(\omega) \cdot (dB)$	$\phi(\omega)$ (grados)	¤
	1000) ²) ⁰ 0°	¤	¤	_¤
	500	¤	¤	_¤
r	'			

Problema · 2 · ()¶

Se da un diagrama de Bode asintótico de magnitud y cuatro funciones de transferencia.¶

$$H_{A} = \frac{Ks^{2}(1+s/80)}{(1+s/20)^{2}(1+s/10^{3})^{2}}$$

$$H_{B} = \frac{Ks(1+s/80)}{(1+s/20)(1+2\zeta s/10^{3}+s^{2}/10^{6})}$$

$$H_{C} = \frac{Ks(1+s/80)}{(1+s/20)^{2}(1+2\zeta s/10^{3}+s^{2}/10^{6})}$$

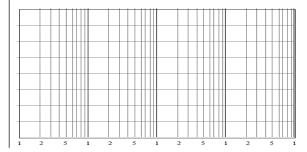
$$H_{D} = \frac{Ks(1+s/80)}{(1+s/20)^{2}(1+s/10^{3})^{2}}$$

$$H_{D} = \frac{Ks(1+s/80)}{(1+s/20)^{2}(1+s/10^{3})^{2}}$$

$$H_{D} = \frac{Ks(1+s/80)}{(1+s/20)^{2}(1+s/10^{3})^{2}}$$

30/03/2011

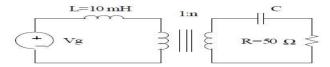
- a) Determine la pendiente m1 en dB/déc, la ganancia A y la frecuencia angular B de la gráfica.¶ □
- b) Explique·a·cuál·de·las·funciones·de·transferencia·dadas·puede·corresponder·el·diagrama·de· magnitud·dibujado.¶
- c)→Calcule· los· valores· aproximados· de· K· y· ζ· (si· aplica)· de· la· función· de· transferencia· seleccionada·en·la·parte·a).¶


CUARTO EXAMEN PARCIAL (20 %)

PROBLEMA 1 (6 p)

Dada la función de transferencia:

$$H(s) = \frac{1,6.10^8 s^2 (s+50)}{\left(s^2 + 8s + 100\right)(s+200)^3}$$


- (4 p) Graficar en la cuadrícula a) adjunta el diagrama de Bode de magnitud para $1 \le \omega \le 10^4$ rad/s, indicando las ganancias de las frecuencias de esquina. Explique.
- b) (2 p) Calcular el error en dB entre el diagrama asintótico y el exacto para las frecuencias $\omega = 10 \text{ rad/s}$ y $\omega = 200 \text{ rad/s}$.

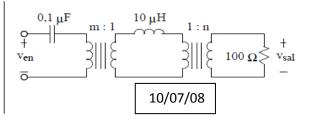
Resonancia

Problema 3 (6 ptos.)


Para el circuito resonante de abajo, se sabe que sus dos frecuencias de corte son 800 rad/s y 4000 rad/s. Calcular ω0, el ancho de banda AB, y los valores de n y C (en μF).

Problema 2 (10/04/2008) (7 ptos.) Se tiene un circuito RLC serie en el cual la bobina tiene resistencia interna R_i . A la frecuencia de resonancia se sabe que $v_R(t) = \cos(2000\pi t)$ V, $i(t) = 0.5\cos(\omega_0 t + \varphi)$ mA y $v_L(t) = 0.05\cos(\omega_0 t) - 2\sin(\omega_0 t)$ V.(5 p) Determina f_0 , φ , R, R_i , L y C. Justifica tus respuestas. (2 p) Sabiendo que $Q = X_L(\omega_0)/R_{total}$, determina el ancho de banda y las frecuencias de corte del circuito.

Problema 3 (5 ptos.)

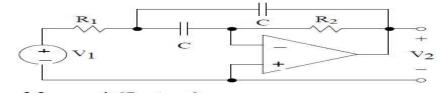

Para el circuito mostrado a la derecha, Aplicado 19/032009 determinar "n" y R para que el circuito resuene a $\omega_0 = 20 \text{ krad/seg y tenga un ancho}$ de banda de 800 rad/seg.

Problema 2 (6 ptos.)

El circuito mostrado a la derecha desea usarse como filtro resonante pasabanda.

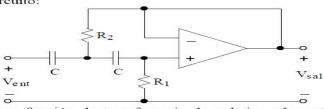
Determina las relaciones de transformación "m" y "n" para que la frecuencia de resonancia sea 100 krad/s y el factor de calidad sea de 25, y las frecuencias de corte bajo estas condiciones.

PROBLEMA 3 (6 p)


Se dispone de un inductor de 1 mH y una resistencia de 20 Ω .

- a) (3 p) Se desea diseñar un filtro pasabanda RLC cuya frecuencia de resonancia sea 100 kHz y cuyo Q sea el máximo posible. Determinar si la conexión debe ser paralelo o serie y calcular el valor del condensador y el Q.
- b) (3 p) Suponiendo que el condensador C es de 100 nF y que la conexión es paralelo, determinar la f₀ del circuito en Hz, el Q y las frecuencias de potencia mitad del circuito en Hz.

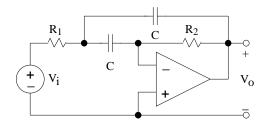
16/07/2006


Problema 2 (6 ptos.)

Para el circuito filtro de abajo, hallar $H(s)=V_2(s)/V_1(s)$ y demostrar que el circuito es un filtro pasa-banda con $\omega_0=\left(C\sqrt{R_1R_2}\right)^{-1}$ y $|H(\omega_0)|=R_2/(2R_1)$.

PROBLEMA 2 (8 p)

Dado el siguiente circuito:

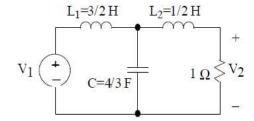

- a) (4 p) Hallar su función de transferencia de voltaje y demostrar que es un filtro pasa-altas de segundo orden. Hallar una expresión para ω₀ del filtro en función de C, R₁ y R₂.
- b) (2 p) Si C=1 F, $R_1 = \sqrt{2} \Omega$ y $R_2 = 1/\sqrt{2} \Omega$, demostrar que el circuito es un filtro Butterworth normalizado (es decir, ω_0 es 1 rad/s y $|H(1)| = |H(\infty)|/\sqrt{2}$).
- c) (2 p) Diseñar mediante la técnica de escalamiento un filtro pasa-altas Butterworth de segundo orden con $f_0=2$ kHz utilizando $C=0.1~\mu F$.

Problema 1 (5 ptos.)

Para el circuito mostrado a la derecha:

- a) Determinar la función de transferencia de voltaje $H(s) = V_0(s)/V_i(s)$.
- b) A partir de la función de transferencia, determinar el tipo de filtro

El circuito mostrado a la derecha es un filtro pasivo Butterworth **pasa-bajas** normalizado de tercer orden, con ω_0 = 1 rad/seg.



19/03/2009

En base al circuito dado, diseñar un filtro pasivo Butterworth **pasa-altas** de tercer orden con una frecuencia de corte de 15 kHz, para alimentar a una carga de 10 k Ω . Dibujar el circuito diseñado indicando los valores de sus elementos.

Problema 5 (4 ptos.)

El circuito mostrado es un filtro Butterworth normalizado de 3° orden. Determina el tipo de filtro y transfórmalo en un filtro pasa-altas con $R = 100~\Omega$ y frecuencia de corte de 800 Hz.

